Category Archives: Polyester

Hybrid Stringing…What is it and Does it Matter?

When the discussion is about stiff polyester string, it will always include the word “hybrid”!  Typically this word is used to convince players that by putting a “soft” multi-filament string in the cross position the string bed will be easier on the wrist, elbow, and shoulder.

Intuitively this makes sense, but in reality, the reverse could be true!

I began analyzing hybrid string beds years ago and did many just to test the theory. At the time it did not seem so important because, frankly, the use of polyester based string did not approach the usage of current times.

I have nothing against the polyester string(s)! I do have an issue with bad applications of polyester string(s).

I am bringing this up again because recently an “interviewee” stated that that replacing the polyester cross string with a multi-filament would cure the ills of a very stiff string bed.

The bottom line:

A high elongation string of any material can increase the string bed stiffness of a hybrid string bed!

How can this be?

Stiff (polyester) strings are “stiff” and the tension applied to them during stringing is low. However, high elongation (multi-filament) strings will be influenced more by tension and become “stiffer”.  The cross stings are typically shorter, and there are more of them, so the combined affect is stiffness.

The initial reaction to this conundrum is to automatically reduce tension on the cross string by a certain amount. Again this raises another issue, and that is racquet distortion.

During the installation of the main strings most stringing machines will allow the racquet to become wider, sometimes a lot wider! So, reducing the cross string tension may not return the racquet to the designed shape. What happens then is the racquet will continue to move around trying to find a “safe” place and therefore the string bed stiffness changes.

In summary, the hybrid string bed will not be statistically different than the full string bed of polyester. This is even truer if the initial string tensions of the polyester are very low, such as 35 to 40 pounds.

So if you feel the need to use polyester just go with lower, lower,  tensions.

 

 

What is “Soft”?

What is “soft”?
In 1994 I did a presentation for the USRSA in Atlanta. What was the topic?

“Understanding String”.

It is now 2016 and we are still trying to understand string! Especially “soft” polyester based string.

In 1994 PolyStar was the only polyester based string I was familiar with. Since then there are dozens of offerings from anyone that can afford to purchase from manufacturers and market the string. If you have a desire to do it I applaud you!

In 1989 I started testing string and calculating “power potential”. Why “power potential”? Because “modulus”, “elongation” and “elasticity” didn’t get to the bottom line of string performance quickly enough! The steps to arrive at power potential are many.

For the testing, several calculations take place including “stretching” the string as in a ball impact. The difference between the first calculation and the “stretched” calculation is the power potential!

I have calculated hundreds of power potentials but have not until now quantified “soft”.

I think now is the time!

Dr. Rich Zarda has done a tremendous amount of work on this issue so we can now distill this work into the following explanation.

So, what is a “soft” tennis string?

Strings in a tennis racquet carry the ball impact load in two ways:
1) Via the pre-load string tension placed in the strings caused by a stringing machine (and the racquet frame “holding” those tensions in place) and
2) Via additional tensions that develop in the same string caused by the elongation of the strings as they deflect with ball impact.

Both of these conditions occur simultaneously and contribute to the string bed stiffness (SBS, units of lbs./in). Racquet technicians measure SBS by applying a load to the center of a supported string bed and measuring the resulting deflection. Dividing the load by the deflection provides the SBS (lbs./in). The lower the SBS, the more power you have (power here is the ability of the ball to easily rebound from the string bed), but the less control (presumably); the higher the SBS, the less power you have but the more control you have (presumably).

One more point about SBS: the lower the SBS, the less the load your body will feel for a given swing. But for an SBS too low (less than 50-80 lbs./in), balls will be flying off your racquet going over the fence; and for an SBS too high (greater than 200-240 lbs./in), the racquet will hit like a board with significantly less ball rebound. So the most common SBSs are between 100-200 lbs./in: a balance between control and power.

As already expressed, SBS is a function of the pulled string tension and the string elongation. Here is what is interesting: For large string elongations (for example, greater than 15%) and reasonably pulled string tensions (greater than 30-40 lbs.), SBS only depends on the pulled string tension and it does not depend on string elongation. Additionally, for this condition, SBS, for these high elongation strings, does not change as a ball is hit with more impact.

linearity_noname

But for a string bed with low elongation strings (less than 5%) under low pulled tensions (less than 20 lbs., or tensions that have been reduced due to racquet deformation and/or string tension relaxing with time), the SBS additionally depends on the string elongation and will significantly increase, in a nonlinear ever-increasing way, for harder ball impacts.

In order to achieve a repetitive feel for a player when hitting with a racquet, it is best to have a SBS that is independent of an increasing ball impact force. This will lead to a more consistent playability of the racquet, which includes a more repetitive feel. This desired “feel” implies using high elongation strings (greater than 10%). If low elongation strings are used (less than 4%), the SBS will significantly increase as the ball impact force increases, resulting in a racquet feeling “boardy” for higher impact loads. And low elongation strings will cause un-proportionally increasing load into the body.

deflections

As you can see by the graph, elongation contributes to SBS in a big way. The red line indicates a stiff string, about 4%, and the blue line indicates a “soft” string, about 15% elongation. You can see the loads increase dramatically as the impact increases. So the harder the hit the higher the loads on the body.

So to the question asked at the start “What is a soft tennis string?” In the context of the SBS discussed above, I would suggest that a soft tennis string is one whose elongation is 10-15%, and a stiff tennis string is 4-6%. And any string under 4% should be categorized as ultra-stiff.

String elongation (soft, stiff, ultra-stiff),  stringing machine strung tension, and string pattern(s) all contribute to SBS and SBS is an important measure of how a racquet plays and should be adjusted for an individual player, stiff and ultra-stiff strings can lead to less-repeatable racquet performance and player injury.

Soft = 10 -15% Elongation             Power Potential Range = 10.0 – 16.0
Stiff = 4 – 6% Elongation               Power Potential Range = 4.0 – 7.0
Ultra Stiff =  Less than 4%            Power Potential Range = .65 – 3.96

Mis-hit? What mis-hit?

Has this ever happened to you?  The string just breaks!  For no reason, it just breaks!

Well, a closer look will tell a different story.  The failure is referred to as a “mis-hit”, or “shank”, and is caused by hitting the ball at the junction of the string bed and racquet frame.

mishitIf look closely you will see a little yellow ball fuzz on the first broken string.  So, if you are going to try to “sell” your story that it “just broke” be sure to clean off the ball fuzz before taking it back to the racquet technician.  Keep in mind, however, that most racquet technicians have seen this failure before. Don’t try to fool them! 😉

All string materials are subject to this failure but some stand out as potential easy breakers.  Thin gauge natural gut, probably the best racquet string ever, will fail at a load like this.  Thin gauge PEEK string is likely to fail, as is some thin polyester based string.  The point is almost any string will give up when encountered with massive  head speed and a “mis-hit”.

As always be certain the grommets are in good condition especially around this area of the racquet.

 

 

%d bloggers like this: